Publications

Research Publications

  1. Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?

    N. Besic, N. Picard, C. Vega, and 10 more authors

    Geoscientific Model Development 2025
  2. Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation

    J. Pauls, M. Zimmer, B. Turan, and 4 more authors

    Preprint arXiv preprint 2025
  3. DUNIA: Pixel-Sized Embeddings via Cross-Modal Alignment for Earth Observation Applications

    I. Fayad, M. Zimmer, M. Schwartz, and 6 more authors

    Preprint arXiv preprint 2025
  4. High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach

    M. Schwartz, P. Ciais, C. Ottlé, and 11 more authors

    International Journal of Applied Earth Observation and Geoinformation 2024
  5. Estimating Canopy Height at Scale

    J. Pauls, M. Zimmer, Una M. Kelly, and 6 more authors

    Forty-first International Conference on Machine Learning 2024
  6. Open-Canopy: Towards Very High Resolution Forest Monitoring

    F. Fogel, M. Schwartz, P. Ciais, and 4 more authors

    Preprint arXiv preprint 2024
  7. Publication preview

    Estimating canopy height at scale

    J. Pauls, M. Zimmer, U. Kelly, and 6 more authors

    Preprint arXiv preprint 2024
  8. The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive

    A. Viana-Soto, C. Senf, J. Sebald, R. Seidl

    Earth System Science Data Discussions 2024
  9. FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach

    M. Schwartz, P. Ciais, A. De Truchis, and 9 more authors

    Earth System Science Data 2023
  10. Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing

    A. Viana-Soto, A. Okujeni, D. Pflugmacher, and 3 more authors

    Remote Sensing of Environment 2022

AI4Forest

AI4Forest is a research project that combines artificial intelligence and forest science to better understand and manage forest ecosystems.

Research Areas
Contact Principal Investigators
Prof. Dr. Philippe Ciais
Laboratoire des Sciences du Climat et de l'Environnement
Université Paris Saclay
Tél. : 01.69.08.95.06
philippe.ciais (at) lsce.ipsl.fr
Prof. Alexandre d'Aspremont
CNRS - ENS
45 rue d'Ulm
Paris, France
48 rue Barrault
75013 Paris
aspremont (at) ens.fr
Prof. Dr. Fabian Gieseke
University of Münster
Leonardo Campus 3
48149 Münster
Telefon: +49 251 83-38151
fabian.gieseke (at) wi.uni-muenster.de
Prof. Dr. Cornelius Senf
School of Life Sciences
Hans-Carl-v.-Carlowitz-Platz 2
85354 Freising
Tel.: +49.8161.71.4371
office.eoem (at) ls.tum.de